Online Miniaturized Asymmetrical Flow Field-Flow Fractionation and Inductively Coupled Plasma Mass Spectrometry for Metalloprotein Analysis of Plasma from Patients with Lung Cancer.

نویسندگان

  • Jin Yong Kim
  • Heung Bin Lim
  • Myeong Hee Moon
چکیده

Metalloproteins (metal-binding proteins) refer to proteins containing metal ion cofactors. The importance of these proteins has increased owing to their involvement in many biological processes. Here, we introduce an analytical platform based on online coupling of miniaturized asymmetrical flow field-flow fractionation (mAF4) and inductively coupled plasma mass spectrometry (ICPMS) for size separation of proteins followed by the detection of metals associated with plasma metalloproteins. Not only did the mild separation of mAF4 get carried out in a biological buffer solution to minimize disruption of the metal-complex structure but free metal ions and salts from complicated biological samples were also removed during separation by crossflow. The relative quantities of metalloproteins detected by mAF4-ICPMS between plasma samples from patients with lung cancer and healthy controls were compared by determining the peak areas of detected elements and retention times; among these, 7 (55Mn, 60Ni, 63Cu, 66Zn, 90Zr, 127I, and 137Ba) out of 16 elements showed substantial changes in patients with lung cancer. For the quantitative comparison of metalloproteins, protein fractions during mAF4 were collected and analyzed by nanoflow liquid chromatography-tandem mass spectrometry using isotope-coded carbamidomethylation. Quantitative analysis showed that some metalloproteins associated with 55Mn, 60Ni, 63Cu, and 66Zn exhibited changes similar to those in patients. These findings demonstrated the potential of mAF4-ICPMS as a powerful high-speed screening method for targeted metalloproteins related to diseases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractionation and Characterization of High Aspect Ratio Gold Nanorods Using Asymmetric-Flow Field Flow Fractionation and Single Particle Inductively Coupled Plasma Mass Spectrometry

Gold nanorods (GNRs) are of particular interest for biomedical applications due to their unique size-dependent longitudinal surface plasmon resonance band in the visible to near-infrared. Purified GNRs are essential for the advancement of technologies based on these materials. Used in concert, asymmetric-flow field flow fractionation (A4F) and single particle inductively coupled mass spectromet...

متن کامل

Characterization of colloidal arsenic at two abandoned gold mine sites in Nova Scotia, Canada, using asymmetric flow-field flow fractionation-inductively coupled plasma mass spectrometry.

Asymmetric flow-field flow fractionation-inductively-coupled plasma-mass spectrometry was used to determine whether colloidal arsenic (As) exists in soil pore water and soil extract samples at two arsenic-contaminated abandoned gold mines (Montague and Goldenville, Nova Scotia). Colloidal arsenic was found in 12 out of the 80 collected samples (=15%), and was primarily associated with iron (Fe)...

متن کامل

An Introduction to Flow Field Flow Fractionation and Coupling to ICP-MS White Paper

Inductively coupled plasma-mass spectrometry (ICP-MS) is the method of choice for analysis of most elements across the periodic chart. Its multi-element capability, low detection limit (ppt), and wide dynamic range (109 orders of magnitude) also make it ideal for the measurement of inorganic engineered nanoparticles (ENPs). While ICP-MS can be used directly to obtain concentrations of nanoparti...

متن کامل

Chip-type asymmetrical flow field-flow fractionation channel coupled with mass spectrometry for top-down protein identification.

A chip-type design asymmetrical flow field-flow fractionation (AF4) channel has been developed for high-speed separation of proteins and top-down proteomic analysis using online coupled electrospray ionization mass spectrometry (ESI-MS). The new miniaturized AF4 channel was assembled by stacking multilayer thin stainless steel (SS, 1.5 mm each) plates embedded with an SS frit in such a way that...

متن کامل

Characterization of silver nanoparticles using flow-field flow fractionation interfaced to inductively coupled plasma mass spectrometry.

The ability to detect and identify the physiochemical form of contaminants in the environment is important for degradation, fate and transport, and toxicity studies. This is particularly true of nanomaterials that exist as discrete particles rather than dissolved or sorbed contaminant molecules in the environment. Nanoparticles will tend to agglomerate or dissolve, based on solution chemistry, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 88 20  شماره 

صفحات  -

تاریخ انتشار 2016